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Abstract. The polaron binding energy and effective mass are obtained for bulk III–V nitride
compounds with wurtzite crystalline structure with the use of a recently derived dielectric continuum
Fröhlich-like electron–phonon interaction Hamiltonian which accounts for the mixing of the
longitudinal optical and transverse optical polarization due to the anisotropy. Corrections are
calculated up to second order in the coupling constants. Numerical results are reported for GaN
and AlN. Good quantitative agreement with experimental results for the electronic effective mass
is obtained for GaN.

1. Introduction

Electronics and optoelectronics based on III–V wide-band-gap nitride semiconducting systems
have emerged as subjects of particular interest in recent years. GaN and its alloys with Al
and In exhibit high thermal conductivity and stability, and are thus ideally suited for use
in making optoelectronic devices operating at room temperature. GaN-based light-emitting
diodes, lasers, and detectors working in the visible-to-ultraviolet range have been built, as well
as high-power transistors with operating frequencies in the microwave region (Khanet al1993,
1995, Nakamuraet al1994, 1996, 1997, van de Walle 1993, Moustakaset al1992, Dupuiset al
1996, Ponceet al1997). On the other hand, wurtzite InN seems to have considerable potential
for device applications due to its transport characteristics—a very high peak and saturation
drift velocities—which are better than those of gallium nitride and gallium arsenide, over a
wide range of temperatures, and high doping concentrations (O’Learyet al 1998).

Under ambient conditions, III–V nitrides have the wurtzite structure. However, at high
pressure some of them, e.g. GaN and AlN, have been known to undergo a structural phase trans-
ition to a rock-salt structure. The electronic properties of both the hexagonal and the cubic
structures have been investigated in detail using a local-density-functional formalism (Van
Campet al 1991, 1992). Nitrides exhibit highly unusual properties among the III–V group of
semiconductors, resembling more, in some respects, the II–VI compounds. In particular, they
present large spontaneous and piezoelectric polarizations (Bernardiniet al 1997).

Over the past few years there has been great interest in carrier–optical-phonon interaction
in polar semiconductors. Recently, the electron–phonon interaction mechanism in crystals
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with wurtzite structure has been considered. A new Fröhlich-type electron–phonon model
Hamiltonian has been put forward for the bulk case (Leeet al 1997), and for wurtzite single
and double heterostructures (Leeet al 1998), within the non-retarded Born–Huang dielectric
continuum model (DCM).

It is known that the DCM describes the optical-phonon modes in bulk ionic crystals
very well in a macroscopic continuum approximation. However, it fails to correctly describe
the mechanical part of the oscillation field in systems with interfaces, thus being unable to
reproduce the results from Raman spectra (Trallero-Gineret al 1992, Ridley 1993). The
treatment in this work will be restricted to bulk systems.

In the proposed DCM model of Leeet al (1997), only the three optical-phonon branches
which are infrared active in the wurtzite structure are considered. Probably the most important
result arising from that work is the mixing of the longitudinal optical (LO) and transverse
optical (TO) modes due to the lattice anisotropy. As a consequence, both kinds of mode
should significantly contribute to the carrier scattering. A similar behaviour is well known in
semiconducting heterostructures, where the presence of interfaces breaks the isotropy in one
or more spatial directions, leading to the mixing of the longitudinal and transverse oscillation
polarizations (Comaset al 1993, 1997), and all of them have to be included in the study of the
electron–phonon interaction because even the TO-type modes can provide a non-negligible
contribution (Mora-Ramos and Contreras-Solorio 1998) to the scattering rates and polaron
properties.

Furthermore, the existence of a spatial direction with low symmetry (thez-axis) also gives
rise to phonon dispersion. To illustrate this, let us mention the application of the macroscopic
DCM to the study of the long-wavelength optical oscillations in dielectric or semiconducting
heterolayers (Wendler 1985). In that case, even when no phonon dispersion is considered for
the bulk constituent materials, the dispersion lawω(q) is typical for the so-called interface
modes. For wurtzite III–V nitrides, phonon dispersion effects should be expected. In fact, the
dependence of the oscillation frequencies upon the phonon wavevectorq is a function not of
the wavevector magnitude but of the angle betweenq and thez-axis of the structure (Leeet al
1997).

Electron–optical-phonon interaction is one of the major scattering mechanisms limiting
the carrier mobility, and also plays an important role in the study of optical properties in ionic
crystals. The electron–phonon scattering rates calculated with the use of the above-mentioned
Hamiltonian (Leeet al 1997) are sufficiently large to indicate a rather strong interaction, and
to motivate the study of the polaronic corrections to the energy and the effective mass of slow
electrons in the conduction band of wurtzite nitride materials.

The polaron is a quasiparticle state consisting of an electron and its surrounding phonon
cloud (Fr̈ohlich 1954). When electrons move through a polar material, they polarize the
surrounding medium and couple to the self-induced polarization field (Davydov 1976). This
coupling acts as some kind of drag that slows down the electron, as it acquires an additional
mass, and—at the same time—behaves as a potential well, decreasing its zero-momentum
energy, and thus tending to localize the electron (which is what actually happens when the
coupling is strong enough). Even for weakly polar materials, these corrections may be quite
important. For information about the state of the art on polaron theory in polar semiconductors
and dielectrics and a thorough discussion of both the weak- and strong-coupling polaron
regimes, see the review by Devreese (1996).

In a previous paper we presented the results for polaronic corrections to the binding energy
and effective mass, evaluated from first-order Rayleigh–Schrödinger perturbation theory for the
case of wurtzite GaN (Mora-Ramoset al 1999), showing that the magnitude of the correction
is, in each case, high enough for us to expect a non-negligible contribution to arise from
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the second-order terms in the self-energy perturbation expansion. Thus, looking for a more
realistic value of the polaronic corrections, calculations up to the second perturbative order in
the coupling constants have to be carried out. In the present work, polaron calculations are
performed for bulk wurtzite nitride materials along the lines of the dielectric long-wavelength
continuum model of Leeet al (1997); we report both first- and second-order contributions.
The importance of the second-order corrections is revealed and commented on.

The paper is organized as follows. In section 2, the results from the DCM for the interaction
Hamiltonian are reviewed. Section 3 contains the details of the calculation of the polaronic
corrections. In section 4, numerical values for the polaron binding energy and effective mass
are presented and discussed for the particular cases of GaN and AlN. Finally, the results are
summarized in the conclusions (section 5).

2. The interaction Hamiltonian

In the framework of the non-retarded DCM, the electron–phonon interaction Hamiltonian
corresponding to the infrared-active phonon frequencies of wurtzite structures is written as the
sum of two contributions, i.e.

Ĥe−ph = Ĥe−LO + Ĥe−TO (1)

whereĤe−LO andĤe−TO stand, respectively, for the electron–LO-like-phonon interaction and
the electron–TO-like-phonon interaction. Both Hamiltonians have the usual Fröhlich-like form
and the electron–phonon vertices are given, respectively, by (Leeet al 1997)
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whereε∞⊥ (ε∞z ) is the high-frequency dielectric constant perpendicular to (along) thez-axis,
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are the static dielectric constants.ωzL andω⊥L are the LO-phonon frequencies along and
perpendicular to thez-axis respectively, andωz andω⊥ are the corresponding lattice dispersion
frequencies. For simplicity,ε∞z andε∞⊥ are assumed to be equal. The characteristic frequencies
�L and�T are also functions ofθ , the angle between the wavevectorq and thez-axis. They
are

�2
L = ω2

zL cos2 θ + ω2
⊥L sin2 θ

�2
T = ω2

z sin2 θ + ω2
⊥ cos2 θ.

(4)

Unlike the case for isotropic materials, the TO-like vertexMT
q is, in general, different

from zero due to the polarization mixing. For instance, a pure transverse mode is obtained for
θ = π/2.

The electronic states are described, as usual, within the effective-mass approximation: the
electron wavevectork is the quantum number which labels the state with energyE = h̄2k2/2m∗
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in the conduction band, which, for simplicity, is assumed to be spherically symmetric with an
effective massm∗ (Leeet al 1997).

To deal with the entire range ofθ , a Fr̈ohlich-like coupling constantαL will be introduced
through

α2
L = m∗e4/(2ε∗⊥ε

∗
z h̄

3ωL)

whereωL is an ‘effective longitudinal frequency’. In our case, we takeωL = �L(θ = π/4) to
treat contributions coming fromω⊥L andωzL on an equal footing (Mora-Ramoset al 1999).
Then, an ‘effective-longitudinal-polaron radius’ρL can be introduced throughρ2

L = h̄/2m∗ωL .
Owing to our wish to describe the electron–TO-like-phonon interaction in terms of a

certain dimensionless coupling parameter, we introduce another Fröhlich-like constantαT,
such that

α2
T = m∗e4/(2ε∗⊥ε

∗
z h̄

3ωT)

(Mora-Ramoset al 1999). By the same arguments as were used to introduce the frequency
ωL , the ‘effective transverse frequency’ωT is chosen to beωT = �T(θ = π/4), and an
‘effective-transverse-polaron radius’ρT is defined throughρ2

T = h̄/2m∗ωT.
Now, the longitudinal and transverse electron–phonon vertices given in equations (2)

and (3) are modified in the following way: the factor 2πe2h̄ is changed to

4πh̄2αL((1/ε
∗
z )(1/ε

∗
⊥))
−1/2ρLωL

for the longitudinal case and to

4πh̄2αT((1/ε
∗
z )(1/ε

∗
⊥))
−1/2ρTωT

for the transverse case. This way of choosingωL , ωT, αL , andαT to represent the electron–
phonon interaction for the wurtzite is, of course, not unique. It is possible to follow different
criteria; but what remains clear is that the final numerical results will be the same. Indeed, it
makes no sense to compare the strengths of the electron–LO-like-phonon interaction and of the
electron–TO-like-phonon interaction through the values ofαL andαT. However, bothαL and
αT could be representative values if comparisons between the strengths of the corresponding
interactions for different wurtzite materials are made.

3. Polaronic corrections

As usual, the starting expression for the evaluation of the first-order perturbative polaronic
corrections will be the real part of the electron self-energy in the one-particle limit atT = 0 K
(Mahan 1990):

6
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where S= {L,T}, x = cosθ , cosν = cos(ϕ − γ ) sinη(1− x2)1/2 + x cosη, ν is the angle
between the wavevectorsk andq, and (η, γ ) denote the direction ofk. The characteristic
phonon frequencies are then written as (Mora-Ramoset al 1999)
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and

fS(x) =



[
1− x2

(1/ε∗⊥)ω
2
⊥L

+
x2

(1/ε∗z )ω
2
zL

]−1

S= L

(ω2
⊥ − ω2

z )
2x2(1− x2)

(ε0
⊥ − ε∞⊥ )ω2

⊥x2 + (ε0
z − ε∞z )ω2

z (1− x2)
S= T.

(7)

The integrand is expanded in powers ofk—the electron wavevector magnitude—and only
the terms up to second order are kept. Isotropy in thexy-plane eliminates any dependence on
γ . Hence, the first-order polaron binding energy will be given by (Mora-Ramoset al 1999)
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On the other hand, the polaron mass is given by

mp = 1

1− µp(η)
(10)

and the correction up to first order is given by
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The second-order corrections to the polaron binding energy and effective mass are
evaluated from the contributions of the diagrams depicted in figure 1. Since the electron–
phonon Hamiltonian (1) contains two different interactions, each corresponding to a different
polarization, there are, in fact, several diagrams with a particular topology. They are:

• One (a) diagram and one (b) diagram both with LO-like phonon lines (case A).
• One (a) diagram and one (b) diagram both with TO-like phonon lines (case B).
• Two (a) diagrams each with one LO-like phonon line plus one TO-like phonon line: the

first one with an upper LO-like line (lower TO-like line) and the second one with an upper
TO-like line (lower LO-like line) (case C).
• Two (b) diagrams each with one LO-like and one TO-like (crossed) phonon lines (case D).

Taking as the starting point the usual equations associated with second-order self-energy
diagrams in the limits of zero temperature and one particle (Mahan 1990), and expanding the
integrands up to second order ink, the resulting expressions for the polaron properties are
obtained.
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Figure 1. Second-order electron–phonon self-energy diagrams.

(i) Cases A and B.The contribution from the diagram of figure 1(a) with two SO-like phonon
lines (S= {L,T}) will be

6
(2)
S(a)(k, η) = −α2

Sh̄ωSξ
(2)
S(a) − α2

S
h̄2k2

2m∗
(µ

(2)
1S(a) cos2 η +µ(2)2S(a) sin2 η). (14)

The contribution from the diagram of figure 1(b) with two SO-like phonon lines (S=
{L,T}) is given by

62
S(b)(k, η) = −α2

Sh̄ωSξ
(2)
S(b) − α2

S
h̄2k2

2m∗
(µ

(2)
1S(b) cos2 η +µ(2)2S(b) sin2 η). (15)

(ii) Case C.To deal with those diagrams with phonon lines of different polarizations, a
frequencyω̄ = √ωLωT will be introduced. The diagram with an upper LO-like line
contributes with

6
(2)
SS′(a)(k, η) = −αSαS′h̄ω̄ξ

(2)
SS′(a) − αSαS′

h̄2k2

2m∗
(µ

(2)
SS′(a) cos2 η +µ(2)2SS′(a) sin2 η) (16)

where S,S′ = L,T (with S 6= S′).
(iii) Case D.It is not difficult to see that the second-order self-energy diagrams with two

crossed phonon lines of different polarizations both give the same contribution. Then, it
is possible to write the added result as

62
LT(b)(k, η) = −αLαTh̄ω̄ξ

(2)
LT(b) − αLαT

h̄2k2

2m∗
(µ

(2)
1LT(b) cos2 η +µ(2)2LT(b) sin2 η). (17)

In this, and all of the previous cases, the expressions for theξ (2)- andµ(2)-coefficients are
explicitly given in the appendix. It is worth noting that the second-order mass correction terms
have the sameη-dependence as the first-order ones, thus providing the possibility of describing
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the effective-mass anisotropy in a homogeneous way. Finally, the second-order correction to
the polaron binding energy will be given by

ε(2)p = −
∑

S=L,T

α2
S(ξ

(2)
S(a) + ξ (2)S(b))h̄ωS− αLαT(ξ

(2)
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while the effective-mass correction corresponding to the second order is

µ(2)p (η) =
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)
cos2 η
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(2)
2S(a) +µ(2)2S(b)) + αLαT(µ
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)
sin2 η.

(19)

4. Results and discussion

The values for the different parameters involved in the numerical evaluation are listed in
table 1. Two different wurtzite nitride materials have been considered: GaN and AlN. The
phonon frequencies and dielectric constants have been taken from Azuhataet al (1995), Perlin
et al (1993), and references therein. For GaN, the electron effective mass has been recently
measured using different techniques (Drechsleret al 1995, Elhamriet al 1998). We have
chosen the valuem∗ = 0.18m0 for our spherical GaN effective mass, because it coincides
with an experimental (Elhamriet al 1998) and calculated average results (Chuang and Chang
1996, Yeoet al 1998, Kim and Han 1998) reported recently. For AlN, calculated values of
m∗⊥ = 0.18m0 andm∗z = 0.25m0 are reported (Kim and Han 1998). No definitive experimental
value seems to be available for the electron effective mass in this material, and different values
have been used in the literature (Chinet al 1994, Maedaet al 1998). In this case, according to
the assumption that we have made, an average valuem∗ = 0.22m0 has been taken as the input
parameter for this material. Nevertheless, as can be seen from the corresponding expressions,
the dimensionlessξ - andµ-coefficients are independent of which value is chosen form∗. All
of the information about this quantity is contained in the coupling constantsαL andαT.

Table 1. Fundamental oscillation frequencies, dielectric constants, and electronic effective masses
for GaN and AlN used in this work.

Material

GaNa AlNb

ω⊥ (cm−1) 561 673

ωz (cm−1) 533 660

ω⊥L (cm−1) 743 916

ωzL (cm−1) 735 893

ε0
⊥ 9.28 8.67

ε0
z 10.01 8.57

ε∞⊥ 5.29 4.68

m∗/m0 0.18 0.22c

a Azuhataet al (1995).
b Perlinet al (1993).
c See the text.
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In table 2, the parameters defined in this work in order to describe the electron–phonon
interaction are presented for both materials, and the numerical results for the dimensionless
ξ - andµ-factors in the first and second perturbative orders are then given in tables 3 and
4, respectively. It can be observed, for instance, that the first- and second-order coefficients
corresponding to pure LO-like interaction are very close in value for both GaN and AlN, while
they differ appreciably in the case of pure TO-like and LO-like-plus-TO-like corrections.

Table 2. Calculated values of the parameters introduced to describe the LO-like and TO-like
electron–phonon interactions.

Material

GaN AlN

h̄ωL (meV) 91.64 112.18

h̄ωT (meV) 67.86 82.66

h̄ω̄ (meV) 78.85 96.28

αL 0.37 0.42

αT 0.43 0.50

ρL (Å) 15.66 12.79

ρT (Å) 21.15 17.36

Table 3. Dimensionless coefficients of the polaronic corrections to the binding energy in the first
and second perturbative orders.

Material

GaN AlN

ξ
(1)
L 9.85× 10−1 1.004

ξ
(1)
T 3.78× 10−3 5.31× 10−4

ξ
(2)
L(a) 6.35× 10−1 6.46× 10−1

ξ
(2)
L(b) 3.68× 10−1 3.74× 10−1

ξ
(2)
T(a) 8.65× 10−6 1.69× 10−7

ξ
(2)
T(b) 5.04× 10−6 9.86× 10−8

ξ
(2)
LT(a) 1.92× 10−3 2.69× 10−4

ξ
(2)
TL(a) 2.82× 10−3 4.03× 10−4

ξ
(2)
LT(b) 1.41× 10−3 1.97× 10−4

Numerical values for the first- and second-order corrections for the polaron binding
energies in GaN and AlN are given in table 5, where the contributions coming from the LO-like,
TO-like, and crossed LO–TO phonons have been given separately. The pure TO contributions
to the first- and second-order corrections are negligible. However, the crossed term, although
smaller than the pure LO contribution, must necessarily be included in order to correctly
describe the polaron binding energy. According to table 3, the leading values, coming from
the LO-like terms, are very similar for both materials, and what makes the difference between
them when evaluating these energy corrections is the value of the coupling constantαL .

With the use of equations (10), (11), and (19), numerical values of the polaron effective
mass for limiting values ofη: η = 0 (mpz) andη = π/2 (mp⊥), can be readily calculated. It
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Table 4. Dimensionless coefficients of the polaronic corrections to the effective mass in the first
and second perturbative orders.

Material

GaN AlN

µ
(1)
1L 1.68× 10−1 1.66× 10−1

µ
(1)
2L 1.62× 10−1 1.67× 10−1

µ
(1)
1T 8.08× 10−4 1.12× 10−4

µ
(1)
2T 5.46× 10−4 7.67× 10−5

µ
(2)
1L(a) 3.73× 10−1 3.01× 10−1

µ
(2)
1L(b) 2.78× 10−1 2.76× 10−1

µ
(2)
2L(a) 1.11× 10−1 1.15× 10−1

µ
(2)
2L(b) 5.57× 10−2 5.72× 10−2

µ
(2)
1T(a) 5.09× 10−6 7.75× 10−8

µ
(2)
1T(b) 3.86× 10−6 7.51× 10−8

µ
(2)
2T(a) 1.54× 10−6 3.02× 10−8

µ
(2)
2T(b) 6.63× 10−7 1.82× 10−8

µ
(2)
1LT(a) 8.13× 10−4 1.11× 10−4

µ
(2)
2LT(a) 2.94× 10−4 4.18× 10−5

µ
(2)
1TL(a) 1.46× 10−3 2.08× 10−4

µ
(2)
2TL(a) 5.78× 10−4 8.26× 10−5

µ
(2)
1LT(b) 1.04× 10−3 1.43× 10−4

µ
(2)
2LT(b) 1.98× 10−4 2.78× 10−5

Table 5. First- and second-order corrections to the polaron binding energy for GaN and AlN.
ε
(1)
p,S (ε(2)p,S)—with S= L,T—is the first- (second-) order contribution from the LO and TO optical

phonons;ε(2)p,LT is the crossed LO and TO contribution.ε(1)p (ε(2)p ) is the total first- (second-) order
correction.

Material

GaN AlN

ε
(1)
p,L (meV) −33.4 −47.58

ε
(1)
p,T (meV) −0.11 −2.7× 10−3

ε
(1)
p (meV) −33.51 −47.58

ε
(2)
p,L (meV) −12.55 −20.13

ε
(2)
p,T (meV) −1.71× 10−4 −5.54× 10−6

ε
(2)
p,LT (meV) −7.76× 10−2 −1.76× 10−2

ε
(2)
p (meV) −12.63 −20.15

is obtained that, for GaN,mpz = 0.21m0 andmp⊥ = 0.19m0, giving, on average, the value
mp = 0.20m0, which coincides with the experimental value (Drechsleret al 1995) for the
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electron effective mass in that material. For AlN, we have:mpz = 0.26m0 andmp⊥ = 0.24m0,
with an average value ofmp = 0.25m0.

The first- and second-order effective-mass corrections are shown in figure 2 for GaN and in
figure 3 for AlN. As can be seen, the first-order effective-mass correction is essentially isotropic
for both compounds. However, the second-order effective-mass corrections are anisotropic,
showing a reduced effect for electrons moving in thexy-plane (η = π/2). The relative
magnitude of the effective-mass correction,Mr = mp(η)/m

∗ − 1, versusη (figures 2(b) and
3(b)), is shown as well. The relative difference 1− Mr(π/2)/Mr(0) gives a value of 0.49
for GaN and 0.41 for AlN. Thus, the angular variation ofMr is 51% and 59%, respectively,
from η = 0 to η = π/2. This result is significantly different to that previously reported by
the authors (Mora-Ramoset al 1999), where a very small anisotropy effect in the polaron
effective mass was reported for GaN when taking into account only the first-order corrections.

Figure 2. The GaN polaronic mass. (a) The mass renormalization factorµ(η). The dotted line
represents the first-order corrections, the dashed line second-order corrections, and the solid line
the total correction. (b) The relative magnitude of the effective-mass correction as a function ofη,
the angle between the electron wavevector and thez-axis of the wurtzite crystalline structure.
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Figure 3. As figure 2, but for AlN.

The use of a more realistic model for the conduction band electronic states, with the inclusion
of different unperturbed values for the effective masses along thez-direction and in thexy-
plane, should lead to a complete description of this effect, and will be published elsewhere.
However, even within the spherically symmetric approximation for the electron effective mass,
an important anisotropy effect is found.

5. Conclusions

We have reported in this work the calculation of the polaron binding energy and effective
mass up to second-order perturbation theory for wurtzite materials with the use of a recently
proposed DCM electron–phonon Hamiltonian. This is done in the framework of the standard
Rayleigh–Schr̈odinger perturbation theory, which is the usual perturbative method in the case
of weak electron–phonon coupling. The different feature here is introduced by the inherent
anisotropy of the wurtzite structure. This is reflected in the interaction Hamiltonian in such a
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way that no general expression for the perturbative expansion in the coupling constants like that
in the isotropic Fr̈ohlich bulk case can be given (Mahan 1990). Here, the existence of an angular
dispersion in the phonon frequencies makes the calculation process more complicated than in
the situation where Einstein phonons (Mahan 1990) or acoustic ones—with linear dispersion—
are considered (Woods and Mahan 1998). Thus, in the present model, the coefficients of the
expansion have to be evaluated for each wurtzite material.

Numerical values for the cases of GaN and AlN show that the magnitude of the coupling
between the conduction electrons and the infrared-active polar optical phonons obtained within
the model is large enough to provide significant polaronic corrections, thus justifying the
assertion of the need for their evaluation. The magnitude of the polaron binding energy should
manifest itself in optical experiments, for instance. Furthermore, an important anisotropy
in the effective mass is reported even when a non-perturbed spherically symmetric value is
used as input parameter. Both LO-like and TO-like oscillation modes contribute, although
the relative weight of the TO-like contribution is much smaller than that of the one coming
from the LO-like phonons. In the present work it has been shown that the second-order
corrections coming from the self-energy diagrams with phonon lines of different polarization
are important for appropriately describing the effective-mass anisotropy. The effect of the
carrier–phonon interaction on the electronic mass anisotropy must be of importance when
studying, for instance, transport properties in this kind of system. It is worth noting that
the inclusion of the electron–phonon correction in the unperturbed theoretical value of the
GaN effective mass obtained through electronic structure calculations leads in our work to the
reproduction of the experimental value obtained through cyclotron resonance measurements
(Drechsleret al1995). Our value is also within the experimental range:m∗ = (0.18±0.02)m0

(Elhamriet al 1998) for the same material.
From the results presented, it is seen that making the second-order corrections is definitely

unavoidable, especially if a numerical value for the polaron effective mass is looked for.
Contributions to this magnitude coming from the second-order terms in the self-energy are of
the same order of magnitude as the first-order ones. In the case of the binding energy, these
terms also provide a significant contribution, but it is in fact smaller than the corresponding
first-order values, as expected.

In both materials, the contributions coming from the pure TO-like terms could be neglected,
even in the first perturbative order, as is obviously appropriate for AlN. Nonetheless, the
second-order diagrams with mixed polarization lines provide values two to four orders of
magnitude higher than the pure TO-like second-order terms leading, in the case of GaN—where
the TO-like values have a greater relative weight in the total magnitude—to non-negligible
contributions. In contrast, for AlN, it is a very good approximation to deal only with the LO-
like electron–phonon interaction when calculating the polaronic corrections. The situation
might be different for other wurtzite materials, where the relative contribution of the TO-like
modes to the strength of the electron–phonon interaction could be appreciable.

The magnitude of the polaron mass anisotropy can also be related to some material factors
like the phonon frequencies and dielectric constant. Then, wurtzite semiconductors like II–VI
compounds, which have larger ionicities but similar phonon frequencies, should present a
larger polaron mass anisotropy, which could be calculated in the same way as described here,
but experimental Fr̈ohlich constants for these materials are scarce (even for InN, available data
on the phonon frequencies and dielectric constants are not complete). It can be expected that
for different wurtzite materials, a higher influence of the electron–phonon interaction on the
effective-mass anisotropy could have appreciable results.

We can expect appreciable contributions from these electron–phonon interaction processes
at room temperature. It has already been reported that there is an increase of one order of
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magnitude in the polaron damping rates on going fromT = 100 K toT = 300 K, for both
first-order LO-like and first-order TO-like processes (Mora-Ramoset al 1999). Considering
the results of the present calculation, we can infer a similar behaviour in the strength of the
second-order mixed-polarization scattering events. The values obtained for the polaron binding
energies indicate the importance that the carrier–phonon interaction might have—for instance,
in the study of exciton-related optical processes in wurtzite semiconducting materials and
heterostructures based on them. It is very well known that these materials have interesting
applications in optoelectronics; e.g. III–V nitride-based blue-green semiconductor lasers have
already been produced.
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Appendix

The expressions for the contributions coming from first- and second-order diagrams to the
polaron self-energy are given in this appendix. For cases A and B,ξ

(2)
S(a), µ

(2)
1S(a), andµ(2)2S(a) in

equation (14) are given by

ξ
(2)
S(a) =

2

π3

ε∗z ε
∗
⊥

ω2
S

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fS(x1)

�S(x1)

∫ 1

−1
dx2

fS(x2)

�S(x2)

× F 00
21 (x1, x2, w, y, z)

µ
(2)
1S(a) =

8

π3

ε∗z ε
∗
⊥

ω2
S

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fS(x1)

�S(x1)

∫ 1

−1
dx2

fS(x2)

�S(x2)

× [x2
1(3F

20
41 (x1, x2, w, y, z) + 2F 20

32 (x1, x2, w, y, z) + F 20
23 (x1, x2, w, y, z))

+ x2
2F

02
23 (x1, x2, w, y, z) + 2x1x2(F

11
32(x1, x2, w, y, z) + F 11

23(x1, x2, w, y, z))]

µ
(2)
2S(a) =

4

π3

ε∗z ε
∗
⊥

ω2
S

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fS(x1)

�S(x1)

∫ 1

−1
dx2

fS(x2)

�S(x2)

×
[
(1− x2

1)(3F
20
41 (x1, x2, w, y, z) + 2F 20

32 (x1, x2, w, y, z)

+ F 20
23 (x1, x2, w, y, z)) + (1− x2

2)F
02
23 (x1, x2, w, y, z)

− 2
√
(1− x2

1)(1− x2
2)(F

11
32(x1, x2, w, y, z) + F 11

23(x1, x2, w, y, z))
]

with theF -functions given by

Fklmn(x1, x2, w, y, z) = yk

(y2 +�S(x1)/ωS)m

zl

(z2 + y2 + 2yz cosϑ + [�S(x1) +�S(x2)]/ωS)n
.

For cases A and B, the contributions of the diagrams in figure 1(b),ξ
(2)
S(b), µ

(2)
1S(b), andµ(2)2S(b), in

equation (15) are

ξ
(2)
S(b) =

2

π3

ε∗z ε
∗
⊥

ω2
S

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fS(x1)

�S(x1)

∫ 1

−1
dx2

fS(x2)

�S(x2)

× G00
111(x1, x2, w, y, z)
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µ
(2)
1S(b) =

8

π3

ε∗z ε
∗
⊥

ω2
S

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fS(x1)

�S(x1)

∫ 1

−1
dx2

fS(x2)

�S(x2)

× [x2
1(G

20
311(x1, x2, w, y, z) +G20

212(x1, x2, w, y, z) +G20
113(x1, x2, w, y, z))

+ x2
2(G

02
131(x1, x2, w, y, z) +G02

122(x1, x2, w, y, z) +G02
113(x1, x2, w, y, z))

+ x1x2(G
11
221(x1, x2, w, y, z) +G11

212(x1, x2, w, y, z) +G11
122(x1, x2, w, y, z)

+ 2G11
113(x1, x2, w, y, z))]

µ
(2)
2S(b) =

4

π3

ε∗z ε
∗
⊥

ω2
S

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fS(x1)

�S(x1)

∫ 1

−1
dx2

fS(x2)

�S(x2)

×
[
(1− x2

1)(G
20
311(x1, x2, w, y, z) +G20

212(x1, x2, w, y, z)

+G20
113(x1, x2, w, y, z)) + (1− x2

2)(G
02
131(x1, x2, w, y, z)

+G02
122(x1, x2, w, y, z) +G02

113(x1, x2, w, y, z))

−
√
(1− x2

1)(1− x2
2)(G

11
221(x1, x2, w, y, z) +G11

212(x1, x2, w, y, z)

+G11
122(x1, x2, w, y, z) + 2G11

113(x1, x2, w, y, z))
]
.

In this case, theG-functions are defined as

Gkl
mnr(x1, x2, w, y, z) = yk

(y2 +�S(x1)/ωS)m

zl

(z2 +�S(x2)/ωS)n

× 1

(z2 + y2 + 2yz cosϑ + [�S(x1) +�S(x2)]/ωS)r
.

The contributions coming from diagrams with phonon lines of different polarizations,ξ
(2)
SS′(a),

µ
(2)
1SS′(a), andµ(2)2SS′(a), with S,S′ = L,T and S6= S′, as appropriate for case C, in equation (16)

are the following:

ξ
(2)
SS′(a) =

2

π3

ε∗z ε
∗
⊥

ω̄2

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fS(x1)

�S(x1)

∫ 1

−1
dx2

fS′(x2)

�S′(x2)

× F00
SS′21(x1, x2, w, y, z)

µ
(2)
1SS′(a) =

8

π3

ε∗z ε
∗
⊥

ω̄2

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fS(x1)

�S(x1)

∫ 1

−1
dx2

fS′(x2)

�S′(x2)

× [x2
1(3F20

SS′41(x1, x2, w, y, z) + 2F20
SS′32(x1, x2, w, y, z)

+ F20
SS′23(x1, x2, w, y, z)) + x2

2F02
SS′23(x1, x2, w, y, z)

+ 2x1x2(F11
SS′32(x1, x2, w, y, z) +F11

SS′23(x1, x2, w, y, z))]

µ
(2)
2SS′(a) =

4

π3

ε∗z ε
∗
⊥

ω̄2

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fS(x1)

�S(x1)

∫ 1

−1
dx2

fS′(x2)

�S′(x2)

×
[
(1− x2

1)(3F20
SS′41(x1, x2, w, y, z) + 2F20

SS′32(x1, x2, w, y, z)

+ F20
SS′23(x1, x2, w, y, z)) + (1− x2

2)F02
SS′23(x1, x2, w, y, z)

− 2
√
(1− x2

1)(1− x2
2)(F

11
SS′32(x1, x2, w, y, z) +F11

SS′23(x1, x2, w, y, z))
]

where

FklSS′mn(x1, x2, w, y, z) = yk

(y2 +�S(x1)/ω̄)m

zl

(z2 + y2 + 2yz cosϑ + [�S(x1) +�S′(x2)]/ω̄)n
.



Polarons in III–V nitrides 8237

The contributions coming from crossed diagrams of different polarizations,ξ
(2)
LT(b),µ

(2)
1LT(b), and

µ
(2)
2LT(b), are then given by

ξ
(2)
LT(b) =

4

π3

ε∗z ε
∗
⊥

ω̄2

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fL(x1)

�L(x1)

∫ 1

−1
dx2

fT(x2)

�T(x2)

× G00
111(x1, x2, w, y, z)

µ
(2)
1LT(b) =

16

π3

ε∗z ε
∗
⊥

ω̄2

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fL(x1)

�L(x1)

∫ 1

−1
dx2

fT(x2)

�T(x2)

× [x2
1(G20

311(x1, x2, w, y, z) + G20
212(x1, x2, w, y, z) + G20

113(x1, x2, w, y, z))

+ x2
2(G02

131(x1, x2, w, y, z) + G02
122(x1, x2, w, y, z) + G02

113(x1, x2, w, y, z))

+ x1x2(G11
221(x1, x2, w, y, z) + G11

212(x1, x2, w, y, z) + G11
122(x1, x2, w, y, z)

+ 2G11
113(x1, x2, w, y, z))]

µ
(2)
2LT(b) =

8

π3

ε∗z ε
∗
⊥

ω̄2

∫ ∞
0

dy
∫ ∞

0
dz
∫ 1

−1

dw√
1− w2

∫ 1

−1
dx1

fL(x1)

�L(x1)

∫ 1

−1
dx2

fT(x2)

�T(x2)

×
[
(1− x2

1)(G20
311(x1, x2, w, y, z) + G20

212(x1, x2, w, y, z)

+ G20
113(x1, x2, w, y, z)) + (1− x2

2)(G02
131(x1, x2, w, y, z)

+ G02
122(x1, x2, w, y, z) + G02

113(x1, x2, w, y, z))

−
√
(1− x2

1)(1− x2
2)(G

11
221(x1, x2, w, y, z) + G11

212(x1, x2, w, y, z)

+ G11
122(x1, x2, w, y, z) + 2G11

113(x1, x2, w, y, z))
]
.

TheG-functions are

Gklmnr(x1, x2, w, y, z) = yk

(y2 +�L(x1)/ω̄)m

zl

(z2 +�T(x2)/ω̄)n

× 1

(z2 + y2 + 2yz cosϑ + [�L(x1) +�T(x2)]/ω̄)r
.

In all of these equations, the variablesy andz, derived from the phonon wavevector magni-
tudes, have been introduced, as well as the variablesx1 = cosθ1 andx2 = cosθ2. θ1 andθ2

are the angles between the phonon wavevectorsq1 andq2 and thez-axis, respectively. The
cosine of the angle between the two wavevectors is a function of the variablesx1 andx2 and
of the angular variablesϕ1 andϕ2, the polar angles associated, respectively, withq1 andq2:

cosϑ = cos(ϕ1− ϕ2)

√
(1− x2

1)(1− x2
2) + x1x2.

As can be seen, the only dependence upon the angular variablesϕ1 andϕ2 is given through
the argument of the cosine in the last formula. This fact allows us to directly evaluate one
of the corresponding polar angular integrals and—what turns out to be the most important
consequence—to demonstrate, after straightforward manipulations, that the second-order mass
correction terms have the sameη-dependence as the first-order ones.

References

Azuhata T, Sota T, Suzuki K and Nakamura S 1995J. Phys.: Condens. Matter7 L129
Bernardini F, Fiorentini V and Vanderbilt D 1997Phys. Rev.B 56R10 024



8238 M E Mora-Ramos et al

Chin V W L, Tansley T L and Osotchan T 1994J. Appl. Phys.757365
Chuang S L and Chang C S 1996Phys. Rev.B 542491
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